Data-Driven Predictions for Small System Energy Loss

Coleridge Faraday, W. A. Horowitz

University of Cape Town, South Africa

Based on CF and W. A. Horowitz, PLB 864, 139437 (2025) and arXiv:2504.XXXXX

4)

Motivation

There is strong evidence that Quark-Gluon Plasma (QGP) forms in heavy-ion collisions at RHIC and the LHC, including from elliptic flow, strangeness enhancement, and jet

Running coupling from data

Extraction of α_s at RHIC and LHC separately

- We find that α_s at RHIC is ~5-10%
- Depends significantly on collisional energy loss implementation (HTL-only

Self-consistency checks based on different experimental datasets

3

Predictions for central small and peripheral large systems

Self-consistency checks

We extract α_s in different collision systems to assess the selfconsistency of our model and comment on potential missing physics

Ratio of extracted α_s in heavy- to light-flavor final states

20-40% increased α_s extracted for heavy compared to light flavors. Potentially resolved by different fraction

Predictions for small and peripheral systems

- With no further fitting, we make predictions for central small systems and peripheral large systems at RHIC and LHC.
- We find equal suppression for 60-70% A + A as for 0-5% p / d + A, compatible with PHENIX data for d + A and A + A and for ATLAS data for A + A, but incompatible with ATLAS p + A data. **NB**: PHENIX d + A data is normalized by prompt photons, while ATLAS p + A is normalized with Glauber model.

We further compute suppression in multiple simple parametric models and find equal suppression for 60-70% A +A and 0-5% p/d + A regardless of weak or strong coupling, single hard or multiple soft scattering, and collisional or radiative energy loss

of collisional vs 2 0.5 0.5 1.5 2 1.5 radiative E-loss |**k**|_{max} multiplier |**k** | _{max} multiplier

10 15 20 5 *L* (fm) p_T (GeV) **Future Work** 6

- Predictions for O + O collisions at RHIC and LHC
- Analytic running coupling calculations
- High- $p_T v_2$ in our analysis from both small and large systems
- Dihadron correlation in our analysis.

Acknowledgements

Computations were performed using facilities provided by the University of Cape Town's ICTS High Performance Computing team: hpc.uct.ac.za. CF and WAH thank the National Research Foundation and the SA-CERN collaboration for their generous financial support during this work and for the funding of this conference trip.

Ratio of extracted α_s in semi-central to central systems

