Energy Loss in Small Quark Gluon Plasmas

Coleridge Faraday

University of Cape Town, South Africa

68th Annual Conference of the South African Institute of Physics 2024

Based on CF, A. Grindrod, W. A. Horowitz arXiv:2305.13182; CF, W. A. Horowitz in prep.

frdcol002@myuct.ac.za

The Early Universe and Heavy-Ions

BICEP2 Collaboration/CERN/NASA

Measuring the Quark Gluon Plasma

QGP in heavy-ion collisions lasts for only $\simeq 10^{-23}$ s! \rightarrow difficult to probe

Angular Correlations

Aggarwal, Elliptic Flow in Relativistic Heavy-Ion Collisions

- Initial spatial anisotropy → final momentum anisotropy
- Quantified through angular correlations in final state particles

Angular Correlations

Aggarwal, Elliptic Flow in Relativistic Heavy-Ion Collisions

- Initial spatial anisotropy → final momentum anisotropy
- Quantified through angular correlations in final state particles

Nuclear Modification Factor

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$
$$= \frac{1}{\langle N_{coll} \rangle} / \frac{1}{\langle N_{coll} \rangle}$$

Quantifies how much **energy is lost** in the medium

How do we know a medium is forming?

Natural question: can the experimental evidence be explained **without a medium**?

 \rightarrow Look at p + p and p + Pb collisions as a baseline

QGP in small systems?

Signatures of **QGP formation** in high multiplicity pp, $p/d/{}^{3}\text{He} + A!$

> + other signatures including quarkonium suppression and strangeness enhancement

ALICE Collaboration, Phys.Rev.Lett. 123 (2019) 142301

QGP in small systems?

Signatures of **QGP formation** in high multiplicity pp, $p/d/{}^{3}\text{He} + A!$

> + other signatures including quarkonium suppression and strangeness enhancement

How about the Nuclear modification factor or R_{pA} ?

B. Schenke, C. Shen, P. Tribedy, Phys.Rev.C 102 (2020) 044905 *ALICE Collaboration, Phys.Rev.Lett.* 123 (2019) 142301

Small system suppression pattern not as clear

ATLAS, JHEP 07 (2023) 074

Small system suppression pattern not as clear

ATLAS, JHEP 07 (2023) 074

PHENIX, arXiv:2303.12899 (2023)

Small system suppression pattern not as clear

ATLAS, JHEP 07 (2023) 074

- Apparent tension between RHIC and LHC suppression results?
- R_{pA} is difficult to measure due to centrality bias

PHENIX, arXiv:2303.12899 (2023)

Small system suppression pattern not as clear

ATLAS, JHEP 07 (2023) 074

- Apparent tension between RHIC and LHC suppression results?
- R_{pA} is difficult to measure due to centrality bias

→ Theoretical input needed

PHENIX, arXiv:2303.12899 (2023)

B. Schenke, C. Shen, P. Tribedy, Phys.Rev.C 102 (2020) 044905 (adapted)

According to hydrodynamic models:

- p+Pb much smaller than Pb+Pb, but with similarly
- large temperatures
- p+Pb has comparable
- length scales to peripheral PbPb collisions

- Model QGP using hydrodynamics
- Energy loss is *radiative* and *elastic*

- Model QGP using hydrodynamics
- Energy loss is *radiative* and *elastic*

- Model QGP using hydrodynamics
- Energy loss is *radiative* and *elastic*

- Model QGP using hydrodynamics
- Energy loss is *radiative* and *elastic*

Energy Loss Short path length correction: Neglected $e^{-\mu L}$ terms Theoretical Kolbe & Horowitz, PRC 100 (2019) 024913 challenges!

Elastic **Energy Loss** Central limit theorem $L \gg \lambda$ applied Wicks, PhD thesis (2008)

L

Elastic Energy Loss

Uncertainty in the elastic energy loss

relating to applying HTL vs Gaussian propagators

We compare two extremes to capture this uncertainty:

- 1. **BT** combination of vacuum and HTL propagators Braaten and Thoma, Phys. Rev. D 44 (1991) R2625
- **2. HTL –** HTL only propagators Wicks, PhD thesis (2008)

Heavy Flavour Suppression in PbPb

Heavy Flavour Suppression in PbPb

Heavy Flavour Suppression in PbPb

- Low pt is sensitive to choice of elastic energy loss (blue vs green)
- Short path length correction to radiative E-loss is small (solid vs dashed)

Light Flavour Suppression in PbPb

• Low-mid pt results sensitive to choice of elastic E-loss kernel

Light Flavour Suppression in PbPb

- Low-mid pt results sensitive to choice of elastic E-loss kernel
- Short path length corr. is extremely large due to large contribution for gluons compared to quarks
- SPL grows in quickly in p_T leading to fast rise in R_{AA}

Light Flavour Suppression in AuAu

- More sensitive to elastic energy loss uncertainty than PbPb, ~100% effect!
- SPL correction is quite small, since it grows in p_T

Light Flavour Suppression in pPb and dAu

COLERIDGE FARADAY

Summary

• Simultaneous suppression predictions in *both* small and ₁ large systems, qualitatively consistent with data

- Small systems are almost entirely elastic energy loss
 - ⇒ System size scan in R_{AA} could disentangle radiation vs elastic energy loss mechanisms

- Future work:
- System size scan with global fitted α_s HTL vs vacuum propagators Detailed uncertainty analysis COLERIDGE FARADAY • Detailed uncertainty analysis

Bonus Slides

Energy Loss Models in Small Systems

Energy Loss Models in Small Systems

Energy Loss Models in Small Systems

 Small system (L) ~ 1 fm comparable to peripheral AA

- Small system (L) ~ 1 fm comparable to peripheral AA
- Small systems have $L/\lambda \sim 1$
 - Central limit theorem inapplicable (elastic)
 - Multiple soft scatter approaches inapplicable

- Small system (L) ~ 1 fm comparable to peripheral AA
- Small systems have $L/\lambda \sim 1$
 - Central limit theorem inapplicable (elastic)
 - Multiple soft scatter approaches inapplicable
- Large systems have $L/\lambda \sim 5$
 - Central limit theorem still dubious?

Why is Gaussian ~ Poisson?

Consider moment expansion of RAA

$$R_{AA}(p_T) = \sum_{n} c_n(p_T) \int d\epsilon P_{\text{tot.}}(\epsilon | p_T)$$
$$= \sum_{n} c_n(p_T) \langle \epsilon^n(p_T) \rangle_{\text{tot.}}$$
$$\langle n \rangle \equiv \frac{\sum_{n} n |c_n \langle \epsilon^n \rangle|}{\sum_{n} |c_n \langle \epsilon^n \rangle|}$$

Small <n> => Gaussian RAA ~ Poisson RAA since zeroth and first moments are identical

Elastic vs Radiative E-Loss Importance

Elastic $\Delta E / E \simeq \alpha^2 T^2 \log (ET) / E$ Radiative $\Delta E / E \simeq \alpha_s^3 L^2 T \log E / E$

- Strong dependence on elastic Eloss used
- Small systems elastic is ~1-3x more important than radiative

Large Formation Time Assumption

- **Large contributions** to SPL corr. at high energies from regions of phase space **not allowed** according to Large Formation Time
- Also impacts DGLV

Large Formation Time Assumption

- Large contributions to SPL corr. at high energies from regions of phase space not allowed according to Large Formation Time assumption
- Also impacts DGLV

0000000000

 $\mathbf{\bar{q}}_{2}, \mathbf{a}_{2}$

- Future work should include a full rederivation of DGLV with LFT assumption relaxed
- Can implement a phenomenological cut in the phase space as well to limit assumption-violating contributions

 $\frac{\mathbf{k}_{\perp}^{2} + m_{g}^{2} + x^{2} M^{2}}{2} \frac{1}{\mu_{1}} \to 0$

Turning Off Elastic E-Loss

Gluon to Light Quark Crossover

$$\begin{aligned} x \frac{\mathrm{d}N}{\mathrm{d}x} &= \frac{C_R \alpha_s L}{\pi \lambda_g} \int \frac{\mathrm{d}^2 \mathbf{q}_1}{\pi} \frac{\mu^2}{\left(\mu^2 + \mathbf{q}_1^2\right)^2} \int \frac{\mathrm{d}^2 \mathbf{k}}{\pi} \int \mathrm{d}\Delta z \,\bar{\rho}(\Delta z) \quad (1) \\ \mathsf{DGLV} \, 1^{\mathrm{st}} \, \mathrm{order} \\ &\times \left[-\frac{2\left\{1 - \cos\left[\left(\omega_1 + \tilde{\omega}_m\right)\Delta z\right]\right\}}{\left(\mathbf{k} - \mathbf{q}_1\right)^2 + \chi} \left[\frac{\left(\mathbf{k} - \mathbf{q}_1\right) \cdot \mathbf{k}}{\mathbf{k}^2 + \chi} - \frac{\left(\mathbf{k} - \mathbf{q}_1\right)^2}{\left(\mathbf{k} - \mathbf{q}_1\right)^2 + \chi} \right] \right]_{Dirdjevic \, and \, Gyulassy, \, Nucl.} \\ &+ \frac{1}{2}e^{-\mu_1\Delta z} \left(\left(\frac{\mathbf{k}}{\mathbf{k}^2 + \chi}\right)^2 \left(1 - \frac{2C_R}{C_A}\right) \left\{1 - \cos\left[\left(\omega_0 + \tilde{\omega}_m\right)\Delta z\right]\right\} \right] \quad \text{SPL corr.} \\ &+ \frac{\mathbf{k} \cdot \left(\mathbf{k} - \mathbf{q}_1\right)}{\left(\mathbf{k}^2 + \chi\right) \left(\left(\mathbf{k} - \mathbf{q}_1\right)^2 + \chi\right)} \left\{\cos\left[\left(\omega_0 + \tilde{\omega}_m\right)\Delta z\right] - \cos\left[\left(\omega_0 - \omega_1\right)\Delta z\right]\right\} \right) \right]_{(2)} \quad (2)$$

$$x\frac{\mathrm{d}N}{\mathrm{d}x} = \frac{C_R\alpha_s L}{\pi\lambda_g} \int \frac{\mathrm{d}^2\mathbf{q}_1}{\pi} \frac{\mu^2}{(\mu^2 + \mathbf{q}_1^2)^2} \int \frac{\mathrm{d}^2\mathbf{k}}{\pi} \int \mathrm{d}\Delta z \,\bar{\rho}(\Delta z) \qquad (1)$$
DGLV 1st order
in opacity
Suppressed
for large L

$$+ \frac{1}{2}e^{-\mu_1\Delta z} \left(\left(\frac{\mathbf{k}}{\mathbf{k}^2 + \chi} \right)^2 \left(1 - \frac{2C_R}{C_A} \right) \left\{ 1 - \cos\left[(\omega_0 + \tilde{\omega}_m) \,\Delta z \right] \right\} \qquad SPL \text{ corr.}$$

$$+ \frac{\mathbf{k} \cdot (\mathbf{k} - \mathbf{q}_1)^2 + \chi}{(\mathbf{k}^2 + \chi) \left((\mathbf{k} - \mathbf{q}_1)^2 + \chi \right)} \left\{ \cos\left[(\omega_0 + \tilde{\omega}_m) \,\Delta z \right] - \cos\left[(\omega_0 - \omega_1) \,\Delta z \right] \right\} \right) \begin{bmatrix} Kolbe \& Horowitz, PRC \\ 100 (2019) 024913 \\ (2) \end{bmatrix}$$

$$\begin{aligned} x \frac{\mathrm{d}N}{\mathrm{d}x} &= \frac{C_R \alpha_s L}{\pi \lambda_g} \int \frac{\mathrm{d}^2 \mathbf{q}_1}{\pi} \frac{\mu^2}{(\mu^2 + \mathbf{q}_1^2)^2} \int \frac{\mathrm{d}^2 \mathbf{k}}{\pi} \int \mathrm{d}\Delta z \,\bar{\rho}(\Delta z) \quad (1) \\ \mathsf{DGLV} \, 1^{\mathrm{st}} \, \mathrm{order} \\ & \times \begin{bmatrix} -\frac{2\left\{1 - \cos\left[(\omega_1 + \tilde{\omega}_m)\,\Delta z\right]\right\}}{(\mathbf{k} - \mathbf{q}_1)^2 + \chi} \begin{bmatrix} (\mathbf{k} - \mathbf{q}_1) \cdot \mathbf{k} \\ \mathbf{k}^2 + \chi \end{bmatrix} - \frac{(\mathbf{k} - \mathbf{q}_1)^2}{(\mathbf{k} - \mathbf{q}_1)^2 + \chi} \end{bmatrix} \begin{bmatrix} \mathrm{order} \\ \mathrm{in opacity} \\ \mathrm{Discretional Gyulassy, Nucl.} \\ \mathrm{Constructional Gyulassy, Nucl.} \\ \mathrm{Constructiona Gyulassy, Nucl.} \\ \mathrm{Constructional Gyulassy, Nucl.} \\ \mathrm{Constructiona Gyulassy, Nucl.} \\ \mathrm$$

Breaking of **colour triviality**

 \rightarrow we'll see this can lead to excessively large corr. for gluons!

Central Limit Theorem in Elastic E-loss

How important is **central limit theorem** in the elastic energy loss?

We compare:

1) HTL result with **Poisson** distribution (*Poisson HTL*)

 $P(\epsilon|E) = \sum_{n=0}^{\infty} P_n(\epsilon|E)$

$$P_{n+1}(\epsilon) = \frac{1}{n+1} \int \mathrm{d}x_n \; \frac{\mathrm{d}N^g}{\mathrm{d}x} \; P_n(\epsilon - x_n)$$

2) HTL result with **Gaussian** distribution (*Gaussian HTL*)

$$P(\epsilon|E) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\left(\frac{\epsilon - \Delta E/E}{\sqrt{2\sigma}}\right)^2\right)$$

 $\sigma = \frac{2}{E^2} \int \mathrm{d}z \frac{\mathrm{d}E}{\mathrm{d}z} T(z) \quad \text{(Fluctuation Dissipation Thrm)}$

COLERIDGE FARADAY

HTL vs Vacuum propagators

- HTL expands in momentum transfer: $q/T \simeq g_s$
- For large momentum transfer, vacuum propagators should be the correct theory
 - The way in which you cross between the two, changes the longitudinal and transverse components
 - Makes a large difference in energy loss

Controlling the LFT approximation

- Collinearity can be enforced via $|\mathbf{k}_{\perp}|_{\max} = 2xE(1-x)$
- Similarly, collinearity + LFT $\Rightarrow |\mathbf{k}_{\perp}|_{max} = Min[2xE(1-x), \sqrt{2xE\mu_1}].$

Example contribution to SPL corr.

$$\mathcal{M}_{1,0,0} = \int \frac{d^4 q_1}{(2\pi)^4} i J(p+k-q_1) e^{i(p+k-q_1)x_0} (ig_s) \epsilon_\alpha (2p-2q+k)^\alpha \times \\ \times i \Delta_M (p-q_1+k) i \Delta_M (p-q_1) (2p-q_1)^0 V(q_1) e^{iq_1x_1} T_{a_1} a_1 c \\ \approx J(p+k) e^{i(p+k)x_0} (-ig_s a_1 c T_{a_1}) 2E \int \frac{d^2 \mathbf{q}_1}{(2\pi)^2} e^{-\mathbf{q}_1 \cdot \mathbf{b}_1} I_1, \\ I_1(p,k,\mathbf{q}_1,z_1-z_0) = \int \frac{dq_1^z}{2\pi} \frac{\epsilon_\alpha (2p-2q+k)^\alpha}{(p-q_1+k)^2 - M^2 + i\epsilon} \times \\ \times \frac{1}{(p-q_1)^2 - M^2 + i\epsilon} v(\mathbf{q}_1) e^{-iq_1^z(z_1-z_0)}$$

Pole at $q_1^{z(3)} = -i\mu_1$

- Standard radiative energy loss (DGLV) assumes $L \gg \mu^{-1}$
- Short path length correction adds back in neglected terms $\sim e^{-\mu L}$ Kolbe & Horowitz, PRC 100 (2019) 024913

What is the Quark Gluon Plasma?

- State of the universe only **microseconds** after the Big Bang!
- Melted down protons and neutrons
- **Near perfect fluid** created in heavy-ion collisions at RHIC and the LHC
- Test **QCD** core component of the standard model

→ How do we *know* QGP is formed in heavy-ion collisions?

We see the SPL correction:

We see the SPL correction:

- Decreases as a function of *L*
- much larger for gluons cf quarks

COLERIDGE FARADAY

We see the SPL correction:

- Decreases as a function of *L*
- much larger for gluons cf quarks
- Can lead to **negative** energy loss
- Grows as a function of *E*

54

Heavy Flavour Suppression in pPb

- Gaussian R_{AA} ~ Poisson R_{AA};
 Surprising since CLT should not be valid
- Extremely sensitive to elastic energy loss model (x2 suppression)

Preliminary results!

We want to understand:

- Do different elastic/radiative energy loss models → different signatures in energy loss?
- Can one simultaneously describe suppression (or lack thereof) in small and large systems?

Preliminary results!

We want to understand:

- Do different elastic/radiative energy loss models → different signatures in energy loss?
- Can one simultaneously describe suppression (or lack thereof) in small and large systems?

 \rightarrow Fit α_s on a per model basis

Global α-Fitted Results at RHIC

• Very different α_s required for different models

• All models can fit both small and large systems, but HTL closer to data

Global α-Fitted Results at the LHC (heavy)

• All data over suppressed, especially small systems

Heavy flavour RAA is especially sensitive to elastic energy loss choice

Global α-Fitted Results at the LHC (light)

Gaussian ~ **Poisson**?

- Opposite ordering than expected according to CLT?
- Strong

COLERIDGE FARADAY

Gaussian ~ **Poisson**?

• Opposite ordering than expected according to CLT?

Gaussian distribution not a good fit for **either** small or large systems

COLERIDGE FARADAY

Strong

Gaussian ~ **Poisson**?

- Opposite ordering than expected according to CLT?
- Strong

COLERIDGE FARADAY

Gaussian distribution not a good fit for **either** small or large systems

 \rightarrow *Why* is Gaussian $R_{AA} \sim$ Poisson

Why is Gaussian ~ Poisson?

One can show that:

1) In small systems: small energy loss \Rightarrow R_{AA} depends mostly on **average** energy loss

$$R_{AA}(p_T) = \sum_{n} c_n(p_T) \int d\epsilon \epsilon^n P_{\text{tot.}} \quad (\epsilon \mid p_T)$$
$$= \sum_{n} c_n(p_T) \langle \epsilon^n(p_T) \rangle_{\text{tot.}}$$

2) In large systems: elastic energy loss small fraction compared to radiative energy loss

