Quark Gluon Plasma Formation in Small Systems

Coleridge Faraday Supervised by A/Prof. W. A. Horowitz

Based on CF, A. Grindrod, and W. A. Horowitz arXiv:2305.13182

24th of November 2023 MSc candidate, University of Cape Town

The Quark Gluon Plasma (QGP)

(CMS 2012, arXiv:1202.2554)

$$R^{h}_{AB} \equiv rac{\mathrm{d}\sigma^{h}_{AB}}{N_{\mathrm{coll}} \ \mathrm{d}\sigma^{h}_{\rho\rho}}$$

- Divide out by independent superposition of p + p collisions
- s.t. $R_{AA} = 1$ for no spectrum modification
- + other evidence for QGP in A+A: elliptic flow, quarkonium suppression, strangeness enhancement

Solid evidence for QGP in A + A; p + A as a null control?

QGP Formation in Small Systems?

Nuclear modification in Small Systems

pp, 25 pb⁻¹ n+Pb. 28 nb-1 • Qualitative success of pQCD \mathbf{F}_{Pb} ATLAS $\sqrt{s} = 5.02 \text{ TeV}$ $\sqrt{s_{\rm MN}} = 5.02 \, {\rm TeV}$ models in A + A1.5 SPS 17.3 GeV (PhPh GLV: dN/dy = 400 GLV: dN/dy = 1400 π⁰ WA98 (0-7%) GLV: dN/dy = 2000-4000 BHIC 200 GeV (AuAu) 0.5 ATLAS, -2.5 < v* < 2.0, 0-90% - YaJEM-D -1.0 < n* < 1.0, 0-100% π⁰ PHENIX (0-10%) ---- elastic, small P... ALICE. -0.3 < n* < 1.3, 0-100%</p> 1.5 h[±] STAB (0-5%) --- elastic, large P LHC 2.76 TeV (PbPb) SPS 10 p_[GeV] 10² ···· Ya IEM CMS (0-5%) - ASW ATLAS 2211 15257 ALICE (0.5%) POM: <a>
 = 30 - 80 GeV²/fm ۳ ج ЧX ື⊭ •0.9⊦ 0.5 RHIC 0.8 $d+Au \sqrt{s_{_{NN}}} = 200 \text{ GeV}$ 0.7 $7.5 < p_{-} < 18 \text{ GeV/c}$ 2 200 3 20 100 0.6 p_ (GeV/c) 10 12 14 16 18 8 CMS 1202 2554 N^{EXP} PHENIX 2303 12899

ATLAS 1412.4092

- Is there nontrivial final state nuclear modification in p + A?
- Theoretical control needed

Energy loss in Small Systems: Theory Challenges

Theoretical energy loss models conventionally assume

- Thermalized medium
- No pre-thermalization time effects
- Explicit dropping of $\mathcal{O}(e^{-\text{system size}})$ terms

Energy loss in Small Systems: Theory Challenges

Theoretical energy loss models conventionally assume

- Thermalized medium
- No pre-thermalization time effects
- Explicit dropping of $\mathcal{O}(e^{-\text{system size}})$ terms
 - These terms included in new **small system correction** to radiative energy loss Kolbé, Horowitz 2015, 1511.09313

Heavy flavour A+A

Data: CMS 1708.04962 + ALICE 1804.09083

Small system correction should be small in A + A

Heavy flavour p+A

- Is small system correction important in p + A?
- Shocking predicted suppression?
 - ightarrow Only $\mathcal{O}(1)$ scatter in p+A
 - $\begin{array}{l} \rightarrow \mbox{ Central Limit Theorem (CLT) in el.} \\ \mbox{ E-loss breakdown} \Rightarrow \mbox{ small system elastic corr. needed (coming soon)} \end{array}$

Light flavour predictions

- Corrected R_{AA} consistent with data for $p_T \sim \mathcal{O}(10\text{--}100)~{
 m GeV}$
- 200% "correction" at high- p_T !

- Potentially consistent with $R_{pA}^{h^{\pm}} > 1$?
- CLT breakdown in elastic E-loss

How physical are these results?

Is anything breaking?

How physical are these results? Is anything breaking? \longrightarrow Investigate all assumptions in the model

Consistency of Large Formation Time Assumption

Energy-weighted expectation of large formation time assumption

Summary

- Elastic small system size correction needed for quantitative *p* + *A* predictions (coming soon)
- Final state radiation (potentially) affects **enhancement** in *p* + *A*?

- Large formation time assumption violated at high-p_T ⇒ short formation time corr. required
- Potential impact on all energy loss models